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Problem Statement

While word embeddings have been
shown to improve the results of many
NLP and IR applications, little effort has
been devoted to using embeddings for
the retrieval of associations between
multiple entities. We use several em-
bedding methods to generate word rep-
resentations from entity-annotated news
data and evaluate them against a word
cooccurrence network for the task of pre-
dicting entity participation in events to an-
swer the questions:

•How should multiple entity embed-
ding vectors be combined?
•How important is the frequency of

entities for the performance?

Entity Relation Models

•Embeddings:
– word2vec: skip-gram, CBOW [1]
– GloVe [2]
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• Implicit Networks [3]

Task: Predicting Entity Participation

•Event: Set of k participating entities.
•Query generation:

– Input: k − 1 entities
– Output: 1 entity
– Example: {e1, e2, ?} → {t}

News Article Data

•127.5k news articles (June – Nov 2016)
•Entities replaced by Wikidata IDs
•Ground truth: Wikipedia Current Events

descriptions of events from data set

Evaluation: Combining Embedding Vectors
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Precision@1:

skip-gram CBOW GloVe

MINMAX 0.189 0.186 0.168
SUM 0.257 0.234 0.252
AVG 0.140 0.116 0.101
CWMIN 0.130 0.095 0.095
CWMAX 0.140 0.102 0.085
CWMULT 0.085 0.066 0.056
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Conclusions:
•SUM performs best.
•Higher embedding dimensions

lead to better performance.
•An extended window size of 21

words yields the best results for
any method.

Evaluation: The Importance of Entity Frequencies
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Open Research Questions
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•GloVe models different relations:
How can GloVe be used to detect new en-
tity associations?
•How to create ensemble methods?
•Are context-sensitive embeddings, such

as ELMo / BERT, a suitable replacement
for implicit networks?
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